

Sonido

Keywords: exponentes y logaritmos, logaritmos, ecuación logarítmica, ecuación exponencial

El sonido es una onda mecánica que percibimos por el oído. Todas las personas perciben el tono y la duración de un tono aproximadamente de la misma manera, pero la percepción del volumen es muy subjetiva. La sonoridad viene determinada por la amplitud de la oscilación en el medio a través del cual se propaga la onda sonora. Dado que la amplitud de las ondas sonoras no es fácil de medir, las cantidades de intensidad sonora I y nivel de intensidad sonora L se utilizan para comparar la sonoridad de forma objetiva.

La intensidad del sonido expresa cuánta energía transfieren las ondas sonoras a una unidad de superficie perpendicular a la dirección de propagación del sonido por unidad de tiempo. Un oído sano puede detectar la menor intensidad sonora $I_0=10^{-12}\,\mathrm{W/m^2}$ a una frecuencia de $1000\,\mathrm{Hz}$, que corresponde al umbral de audición. Por otra parte, la intensidad sonora de $10\,\mathrm{W/m^2}$ es lo suficientemente fuerte como para corresponder al umbral del dolor. Sin embargo, aumentar diez veces la intensidad sonora I no corresponde a percibir el sonido diez veces más fuerte. Por lo tanto, para expresar la sonoridad se utiliza más bien el nivel de intensidad sonora L que utiliza una escala logarítmica en decibelios (dB).

El nivel de intensidad sonora L en decibelios se define mediante la ecuación

$$L = 10 \log \frac{I}{I_0},$$

donde I es la intensidad sonora en el lugar dado y $I_0=10^{-12}\,{\rm W/m^2}$, que corresponde al umbral de audición. El nivel de intensidad sonora de $60\,{\rm dB}$ corresponde al volumen de una conversación normal, $90\,{\rm dB}$ es el volumen de un cortacésped y $110\,{\rm dB}$ es el volumen de una discoteca.

A partir de un volumen superior a $85\,\mathrm{dB}$ existe riesgo de daño auditivo en escuchas prolongadas (aunque no nos duela). A partir de un volumen superior a $100\,\mathrm{dB}$, existe el riesgo de sufrir daños auditivos en cuestión de minutos. Exploremos la relación entre la intensidad sonora y el nivel de intensidad sonora, es decir, el volumen percibido por el oído.

Ejercicio 1. La intensidad sonora es de $1,27\cdot 10^{-3}\,\mathrm{W/m^2}$ mientras escuchamos un altavoz con una potencia sonora de $20\,\mathrm{W}$ a una distancia de $50\,\mathrm{m}$ del mismo (supongamos una transmisión uniforme de la onda sonora en el semiespacio libre). ¿Cuántos decibelios medimos en este lugar?

Solución. Utilizamos la definición de nivel de intensidad sonora $L=10\log\frac{I}{I_0}$, para el cálculo, donde $I=1,27\cdot 10^{-3}\,\mathrm{W/m^2}$ es la intensidad sonora en el lugar dado y $I_0=10^{-12}\,\mathrm{W/m^2}$.

$$L = 10\log\frac{I}{I_0} = 10\log\left(\frac{1{,}27\cdot 10^{-3}}{10^{-12}}\right) = 10\log\left(1{,}27\cdot 10^9\right) = 91~\mathrm{dB}\,.$$

El nivel de intensidad sonora es de $91~{\rm dB}$ a una distancia de $50~{\rm m}$ del altavoz, que corresponde al nivel de ruido de una motocicleta o un cortacésped.

Ejercicio 2. ¿Cómo cambiará el nivel de intensidad sonora si hay un doble de intensidad sonora en el lugar del ejemplo anterior, es decir, $2 \cdot 1,27 \cdot 10^{-3} \, \text{W/m}^2$?

Solución. Utilizamos la misma fórmula que en el ejercicio anterior:

$$L = 10\log\frac{I}{I_0} = 10\log\left(\frac{2\cdot 1,27\cdot 10^{-3}}{10^{-12}}\right) = 10\log\left(2,54\cdot 10^9\right) = 94~\mathrm{dB}~.$$

Results matter!

El cálculo muestra que el doble de intensidad sonora no corresponde al doble de decibelios. El nivel de intensidad sonora aumentará de $91\,\mathrm{dB}$ to $94\,\mathrm{dB}$.

yfi

Ejercicio 3. From the formula for the sound intensity level, find the value ΔL , by which the sound intensity level L, changes if the sound intensity is doubled from I to 2I.

Solución. Se trata de una generalización del problema anterior.

$$\Delta L = 10\log\frac{2I}{I_0} - 10\log\frac{I}{I_0} = 10\cdot\left(\log\frac{2I}{I_0} - \log\frac{I}{I_0}\right) = 10\log\left(\frac{\frac{2I}{I_0}}{\frac{I}{I_0}}\right) = 10\log2 \doteq 3~\mathrm{dB}$$

Al duplicar la intensidad sonora, el nivel de intensidad sonora aumenta en 3 dB.

Se trata de una generalización del problema anterior.

$$\Delta L = 10 \log \frac{2I}{I_0} - 10 \log \frac{I}{I_0} = 10 \cdot \left(\log \frac{2I}{I_0} - \log \frac{I}{I_0}\right) = 10 \log \left(\frac{\frac{2I}{I_0}}{\frac{I}{I_0}}\right) = 10 \log 2 \doteq 3 \text{ dB}$$

El nivel de intensidad sonora aumenta en 3 dB cuando la intensidad sonora se duplica.

Ejercicio 4. La intensidad del sonido es inversamente proporcional al cuadrado de la distancia a la fuente sonora. ¿Cuánto cambia el nivel de intensidad del sonido si se duplica la distancia a la fuente sonora?

Solución. Como la intensidad sonora I es inversamente proporcional al cuadrado de la distancia, obtenemos

$$I = \frac{k}{l^2},$$

donde l es la distancia a la fuente sonora. Cuando la distancia se duplica, la intensidad del sonido será

$$\tilde{I} = \frac{k}{(2l)^2} = \frac{1}{4} \cdot \frac{k}{l^2} = \frac{1}{4}I.$$

La intensidad del sonido se reduce a $\frac{1}{4}$ de su valor original.

$$\Delta L = 10 \log \frac{\frac{1}{4}I}{I_0} - 10 \log \frac{I}{I_0} = 10 \cdot \left(\log \frac{\frac{1}{4}I}{I_0} - \log \frac{I}{I_0}\right) = 10 \log \left(\frac{\frac{\frac{1}{4}I}{I_0}}{\frac{I}{I_0}}\right) = 10 \log \frac{1}{4} \doteq -6 \text{ dB} \,.$$

El nivel de intensidad sonora se reduce en 6 dB if si doblamos la distancia a la fuente sonora.

Ejercicio 5. A partir de la fórmula del nivel de intensidad sonora $L=10\log\frac{I}{I_0}$, expresa la intensidad sonora I.

Solución. En primer lugar, aislamos la función logarítmica $\frac{L}{10} = \log \frac{I}{I_0}$ y, a continuación, utilizamos la función inversa del logaritmo, es decir, la función exponencial:

$$10^{\frac{L}{10}} = \frac{I}{I_0}$$
.

A partir de aquí, expresamos la intensidad sonora

$$I = I_0 \cdot 10^{\frac{L}{10}}$$
.

Results matter!

Ejercicio 6. ¿En cuántas veces aumentará la intensidad del sonido si el nivel de intensidad del sonido aumenta en 20 dB?

Solución. El valor del nivel de intensidad sonora cambia de $L_1=L$ to $L_2=L+20\,\mathrm{dB}.$ Utilizamos la fórmula $I=I_0\cdot 10^{\frac{L}{10}}$ y expresamos el cociente $\frac{I_2}{I_1}$:

$$\frac{I_2}{I_1} = \frac{I_0 \cdot 10^{\frac{L_2}{10}}}{I_0 \cdot 10^{\frac{L_1}{10}}} = \frac{10^{\frac{L+20}{10}}}{10^{\frac{L}{10}}} = 10^{\frac{L+20}{10} - \frac{L}{10}} = 10^2 = 100.$$

Cuando el nivel de intensidad del sonido aumenta en $20\,\mathrm{dB}$, la intensidad del sonido aumentará cien veces.

Bibliografía

1. Kubera, Miroslav; Nečas, Tomáš; Beneš, Vojtěch. *Online učebnice fyziky pro gymnázia - Zvuk.* Disponible de https://e-manuel.cz/kapitoly/mechanicke-vlneni/vyklad/zvuk/ [cit. 24.10.2023].

